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Abstract—The rise of autonomous technologies with unpar-
alleled accuracy is revolutionizing computing and robotics by
integrating machine learning techniques. This study focuses on
advancing social navigation in autonomous robotics by improving
object detection methods. We have refined the classification of
objects within social environments into four distinct categories:
living dynamic objects, non-living dynamic objects, living non-
dynamic objects, and non-living non-dynamic objects. This
differentiation in social navigation enables robots to process
and respond to social cues, fostering a harmonious coexistence
between humans and machines in shared spaces. Furthermore,
we have introduced an adaptive proxemic zone surrounding
these objects to define the boundaries for interaction. This
concept, borrowed from human sociology, is instrumental in
developing socially aware robots that respect personal space and
societal norms. The proxemic zone is a buffer that helps mitigate
potential conflicts or uncomfortable situations during human-
robot interactions. The efficacy of our approach is validated
through results presented herein, which lay the groundwork for
the development of socially intelligent robots that can seamlessly
integrate into human environments and interact with people in
a more natural and empathetic manner.

Index Terms—Object Detect, Proxemic Zone, Social Naviga-
tion, Robot-Human Interaction

I. INTRODUCTION

In our rapidly globalizing world, technological evolution has
been shaped by human needs and advancements in knowledge
and materials since the first industrial revolution. This progres-
sion is exemplified by theories like Moore’s Law, proposed
by Gordon E. Moore, highlighting the exponential growth of
microchip and processor capacities, typically doubling every
two years [1]. This trend reflects the increasing computational
power for complex activities and influences the integration
of Machine Learning techniques in everyday human tasks
[2], [3]. The emergence of intelligent systems capable of
learning and adapting offers a revolutionary perspective in our
interaction with technology, marking a significant shift in how
we comprehend and engage with the world.

The challenge to robotics, extends beyond mere task exe-
cution; developers must consider the more social aspects of
human-robot interaction and navigation, focusing on adaptive
responses to context [4]. In line with these approaches, pi-
oneering work introduces a robocentric perspective, aiming
to bring assertive practicality to the field [5]. Building on
this foundation, our work presents an architecture designed
to enhance the interaction between robots and humans in
shared environments. This architecture employs an objective
classification system that categorizes objects into four distinct
classes based on their dynamic and non-dynamic properties.
Such classification ensures that the robot’s movements are
harmonious with those of the people in its vicinity, thus
avoiding any restriction or interference in human mobility.
This approach optimizes the robot’s navigational capabilities
and aligns with the ethos of creating machines that are adaptive
to human presence and behaviour.

Continuing from the established framework, our classifica-
tion system within the proposed architecture delineates objects
into four distinct categories, each with specific characteristics
and implications for the robot’s navigation and interaction
strategies. These categories are as follows: dynamic non-
living objects (e.g., vehicles), dynamic living objects (e.g.,
people), non-dynamic non-living objects (e.g., chairs), and
non-dynamic living objects (e.g., flowers). This categoriza-
tion guides the robot’s movement and interaction within its
environment and in recognizing and responding appropriately
to different elements in its surroundings. To do this, our work
delves into an aspect critical to social robotics: the navigation
concerning proxemic zones. The concept of proxemic zones,
initially studied by anthropologist Edward Hall [6], plays an
important role in the interaction dynamics between robots
and humans. These zones delineate the spatial boundaries
of human comfort levels in social interactions, which are
crucial for robots to navigate and operate effectively in human-
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centric environments. Our architectural design incorporates
these proxemic principles into each one of the objects detected
in the scene, ensuring that robots respect these invisible yet
significant boundaries.

Incorporating proxemic zones into the robot navigation
process, as highlighted in recent research [7], enhances the
social acceptability and integration of intelligent machines
into daily life. By recognizing and adhering to these spatial
norms, robots can interact more naturally and respectfully
with humans, facilitating a seamless integration into various
environments. This approach advances the technical prowess
of robotics and addresses the socio-cultural dimensions of
human-robot interaction. The emphasis on proxemic zones
within our architecture marks a significant advancement in
social robotics, aligning technological innovation with the
nuanced complexities of human social behaviour.

The application of our research is exemplified through the
use case of an autonomous wheelchair, a context where the
subtleties of social navigation are paramount [8]. Our paper
presents the results validating the efficacy of the approach,
laying a foundation for developing new algorithms for so-
cially aware robot navigation. These robots are envisioned
to integrate into human environments, interacting with peo-
ple naturally and seamlessly. The research presented herein
contributes to the technological advancements in autonomous
robotics. It addresses the sociological aspects of human-
robot interaction, marking a significant step towards achieving
harmonious coexistence.

Our research distinguishes itself in social robotics by in-
tegrating an AI-based object classification system with the
concept of proxemic zones, a synthesis not commonly ob-
served in existing literature. Unlike studies focusing on spe-
cific scenarios or theoretical aspects, our work emphasizes
practical application across diverse settings, ensuring effec-
tive navigation and interaction in predictable and dynamic
environments. This approach goes beyond technical navigation
strategies by prioritizing user comfort and social norms, thus
balancing technological advancement with user-centric design.
Our contribution lies in creating a comprehensive framework
that respects the physical space and is also attuned to the social
context of human-robot interactions, marking a significant
advancement in the practical deployment of socially aware
robotic systems.

II. RELATED WORK

The development of social robots [9], [10] contributes to
the process of integrating new technologies, mainly linked
to artificial intelligence, in social environments where there
may be interactions between Human and Machine, promoting
efficiency and agility to yours activities. Neural networks,
trained to recognize and categorize objects, play a crucial role
in this landscape. A notable example is the YOLO (You Only
Look Once) framework [11], which has become a staple in
augmenting robotic navigation systems. Our paper uses this
classifier as a starting point for navigation that adapts to the
typology of objects in the robot’s surroundings.

In a similar research line, the authors in [12] emphasize the
importance of accurate object classification in natural settings,
which is crucial for mobile robots navigating outdoors. The
ability to discern between natural and artificial objects helps
in path planning and obstacle avoidance, ensuring the robot’s
smooth operation in varied terrains. Similarly, the research [13]
focuses on the significance of object recognition in indoor
settings. This is vital for robots to identify and navigate
around everyday indoor objects like furniture and doors, aiding
in tasks ranging from domestic chores to assistive care in
healthcare settings.

Omrani’s work [14], also brings relevance to the develop-
ment of detection of static and dynamic objects to promote
good robotic navigation, considering that such objects that can
enter the robot’s locomotion space and their recognition bring
new information for the robot in terms of a more complete
system about predictability and suitability.

Focusing on robot social navigation, the concept of prox-
emics [6], which refers to the use of space in human-robot
interaction, has garnered significant attention. Proxemics is
crucial for ensuring that robots can navigate and interact with
humans in a manner perceived as natural and comfortable. The
study [15] delves into the subtleties of proxemics in the context
of casual human-robot encounters in indoor environment.
Their research highlights the importance of understanding and
respecting personal space in various social contexts, emphasiz-
ing that appropriate proxemic behaviour by robots is essential
for their acceptance and effectiveness in social settings. This
work is going on the research line of similar studies in the
current literature.

In [16], the authors use proxemic theory to define personal
spaces and human-human and human-object interaction spaces
and associate these regions to areas where the robots’ navi-
gation is forbidden or penalized. In other recent works, such
as the one presented in [17], the authors analyse the state
of works on human-robot proxemics. This review synthesizes
the current state of knowledge in the field and sheds light
on the diverse methodologies and approaches used to study
proxemic interactions. It underscores the multidisciplinary
nature of proxemics research, involving aspects of psychology,
sociology, robotics, and computer science. The review also
points out the varying cultural and individual differences in
proxemic preferences, suggesting a need for adaptive and
context-aware proxemic behaviours in robots.

These last studies indicate that effective social navigation for
robots transcends mere physical movement through space [17].
It involves a deeper understanding of the social dimensions
of the environment and human space utilisation. Therefore,
incorporating proxemics into robot navigation systems requires
careful consideration of human comfort levels, cultural norms,
and situational appropriateness. Leveraging advanced machine
learning techniques, our research enhances social navigation
in autonomous robotics by introducing an object classification
system to define the adaptive proxemic zone concept.

In this respect, in the work presented in [18], the authors
describe an innovative approach to integrating autonomous
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wheelchairs within hospital settings. Their work is a testa-
ment to the potential of robotic aids in enhancing mobility
and independence for individuals in healthcare environments.
Incorporating autonomous navigation systems in wheelchairs
necessitates a deep understanding of proxemics, particularly
in crowded and dynamic hospital spaces, to ensure the safety
and comfort of patients and healthcare staff.

Similarly, the authors in [19] delve into the challenges of
navigating wheelchairs in environments fraught with obstacles.
This study underscores the importance of advanced object de-
tection and classification in enabling autonomous wheelchairs
to manoeuvre safely and effectively, especially in environ-
ments not traditionally structured for robotic navigation. While
these studies in assistive robotics focus primarily on enhanc-
ing the autonomous navigation of wheelchairs in complex
environments, our research distinguishes itself by integrating
a comprehensive understanding of social dynamics through
proxemic awareness and object classification. Our approach
addresses the physical manoeuvring challenges and sensitively
adapts to the social contexts of human-robot interactions,
ensuring a more empathetic and social navigation experience
in shared spaces.

Traditional methodologies that use YOLO for computer vi-
sion processing focus their use around the literal determination
of objects through trained classes, like chair, computer and
others [20]. However, our focus with this work is on building
an intelligent system that can encompass reduced classification
into just four classes based in dynamic or static, that will
help the robot to take decisions during your navegation in
dynamic cases, and determine proxemic zones to make the best
trajectory for the robot. We apply these concepts to a specific
use case involving assistive robotics, particularly focusing on
autonomous wheelchairs. This application is a prime example
of how sophisticated object classification systems and prox-
emic awareness can significantly improve robots functionality
and social adaptability in sensitive environments.

III. METHODS

In today’s world, the ubiquity of semi-autonomous machines
in everyday life is increasingly noticeable. These devices
are adept at adapting to and interacting within dynamic
environments, with a critical requirement being their ability
to navigate these settings safely. To address this need, our
research has developed a robotic system that integrates com-
puter vision for object detection and innovative navigation
techniques suitable for social contexts, specifically focusing on
implementing proxemic zones. Moreover, we have introduced
a classification approach within our robocentric perception
system, wherein objects are categorized into specific classes
that significantly influence the formulation of proxemic zones.
Figure 1 overviews our proposed approach, illustrating its
various sensing and data processing capabilities. The system
encompasses several key components:

• Robot Camera: This is the initial phase of capturing visual
information from the environment.

• Obstacle Detection: Using YOLOv5, this stage processes
data from the camera to identify objects in the visual
field.

• Finder: This algorithm is responsible for locating objects
on the map

• Generation of the Proxemic Zone: The final step in the
flowchart, where both the distance measurement and the
detected object class are used to generate a proxemic
zone—a term that usually refers to the region surrounding
each object.

• Navigation: Responsible for moving the robot from one
position to another

The legend in Fig. 1 lists the components involved in the
process.

Fig. 1. Process flow diagram illustrating the generation of proxemic zones
corresponding to classified objects.

A. Workspace

To carry out this work, we relied on the use of a motor-
ized wheelchair adapted by GIPAR (Innovation and Research
Group in Automation and Robotics) to carry out navigation
autonomously, [21], as illustrated in Figure 2. To acquire visual
data, we used the RGB-D stereo camera (ZED 2i), that is,
a color camera with depth function. Odometry, responsible
for guiding autonomous navigation, has two location systems,
IMU and encoders. For data processing, we used a laptop
equipped with an Intel Core i7-10750H processor, NVIDIA
GeForce GTX 1650 4GB graphics card, 8GB of RAM and
512GB SSD. The operating system used was Linux Ubuntu
20.04, and ROS Noetic, version compatible with Ubuntu.

B. Virtual Environment

For the implementation of this study, the Robot Operating
System (ROS) and robotic simulation software (GAZEBO). A
virtual environment with 3D objects was created to enhance
the simulation’s realism and mirror the diverse array of objects
in actual settings. This allowed for testing the robot’s ability
to detect and classify objects and the definition of specific
proxemic regions.

We integrated the ROS navigation stack into our framework,
augmenting it with the capability to incorporate proxemic
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Fig. 2. Modified motorized chair for autonomous navigation.

zones into the mapping process. This addition enabled the sys-
tem to navigate efficiently and respect the spatial boundaries
defined by proxemic principles. As a result, the robot could
generate proxemic regions for each object within the virtual
environment, simulating realistic human-robot interaction sce-
narios.

C. Object Detection and classification

In artificial intelligence, computer vision is a subarea that
empowers machines to derive meaningful information from the
real world. This field spans a wide spectrum, from processing
images to applications in diverse sectors such as industrial
automation, medical diagnostics, and surveillance. A funda-
mental aspect of computer vision is object detection in robotics
for autonomous vehicles working in human environments.
Accurate identification of entities such as pedestrians, vehicles,
and road signs is critical for social-awareness navigation for
these systems. This capability is quantified by metrics like ac-
curacy, precision, and recall, which evaluate the effectiveness
of object detection algorithms in varied environments.

In our research, we utilize an RGB camera with a resolution
of 640 × 480 pixels for environmental image capture. The
images are processed using the YOLO, Object Detection
Algorithm, formulated as:

P (object)×
n∑

i=1

P (Ci|object)

where P (object) estimates the probability of an object’s pres-
ence in the image, and P (Ci|object) calculates the conditional
probability of the object belonging to class Ci out of n classes.
We propose a new classification system, tabulated in Table
I, consisting of four obstacle categories. This system groups
objects by living/non-living (L/NL) and static/dynamic (S/D)

attributes with a binary classification approach:

Class =


1 if L and S
2 if NL and S
3 if L and D
4 if NL and D

For example, dynamic non-living obstacles such as cars are
classified under Class = 4. This streamlined classification
enables object categorization, enhancing the robot’s navigation
and interaction capabilities in human environments.

TABLE I
RELATIONSHIP BETWEEN SECURITY ZONE REGION AND DETECTED

OBJECT CLASS

Class Group Example of Objects
Dynamic Object - Living Being Human, animals

Dynamic Object - Inanimate Being Vehicles, other robots. . .
Static Object - Living Being Plants

Static Object - Inanimate Being Table, chair

D. Finder

This section focuses on the Finder algorithm, which was
developed to improve robotic navigation by detecting obstacles
and generating appropriate safety zones for each. Unlike
traditional approaches that use uniform safety zones across
the navigation map, Finder dynamically adjusts these zones to
suit each detected obstacle. This functionality allows for more
context-aware navigation, adapting the robot’s path according
to the specific obstacles it encounters.

Finder uses computer vision techniques to identify obstacles
and a depth camera to gauge their distance from the robot
accurately. This dual approach ensures the robot recognises the
obstacles and their spatial relationship within its environment.
Fig. 3 provides a comprehensive overview of how Finder
operates, illustrating the process from data input to the final
output. This depiction offers insights into the algorithm’s
operational flow, highlighting how it processes environmental
data to make informed navigation decisions.

Fig. 3. Flowchart illustrating the operational process of the Finder algorithm.
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1) Data Acquisition for the Finder algorithm: The Finder
algorithm’s effectiveness depends on acquiring 3D data from
the environment using a depth camera, the YOLOv5 model,
and the robot’s positional data on the map.

This depth data is then published on a ROS topic, facilitat-
ing the communication between the different services in the
proposed system.

Concurrently, the YOLOv5 object detection model iden-
tifies objects in the camera’s field of view, providing data
like each object’s class and bounding box. When an object
is detected, YOLOv5 generates bounding box coordinates
(xmin, ymin, xmax, ymax), which are used to determine the ob-
ject’s location and size. This information is also communicated
via a ROS topic.

2) Distance from Obstacle to Robot: In our proposal,
implementing proxemic zones depends on the robot’s ability
to measure distances between itself and detected objects. We
use a method that calculates the midpoint of a bounding box
generated by the object detection algorithm.

3) Determining the Object’s Position Relative to the Robot:
Upon calculating xmid and ymid, the central points of the
bounding box, the algorithm then focuses on determining
the object’s distance from the robot’s camera. This value is
obtained from the depth camera data, specifically from the
previously calculated Dpixel array.

4) Convert Object Position to Global Map: In our paper,
we address the need to contextualize the robot’s perception
within its environment. Although the previously determined
coordinates are relative to the robot, understanding the robot’s
position on the map is crucial. This knowledge allows us to
combine the position and orientation data of the robot with
geometric calculations to pinpoint the location of obstacles on
the map. The position of the obstacle in the map coordinates
is determined using the following equations:

Xo.m =

{
sin

[
γ + sin−1

(
Yo.r

dist

)]
× dist

}
+Xr (1)

Yo.m =

{
cos

[
γ + sin−1

(
Xo.r

dist

)]
× dist

}
+ Yr (2)

In these equations, Xo.m and Yo.m represent the obstacle’s
coordinates on the map. The variables Xr and Yr are the
robot’s coordinates on the map, while Xo.r and Yo.r are the
obstacle’s coordinates relative to the robot. The term dist is the
distance from the robot to the obstacle, and γ is the orientation
angle of the robot.

E. Proxemic Zones

In our research, the concept of proxemic regions in robotics
is redefined to encompass the distance social robots should
maintain from humans during interactions and the robot’s
safety in the environment. This work introduces a novel
perception of these spaces, considering human comfort and
robotic safety. Since proxemic zone classifications traditionally
apply to interactions with people, we present the term ’safety

zone’ for object-related distances. The extent of these safety
zones correlates with the category into which an object is
classified. In Table II, specific spaces for each class’s proxemic
zone are suggested, considering potential hazards to both the
robot and the object.

TABLE II
RELATIONSHIP BETWEEN SAFE ZONE REGION AND DISTANCE IN METERS

Order Class Group Safety Zone
1 Dynamic Object - Living Being 1.5 m
2 Dynamic Object - Inanimate Being 1.0 m
3 Static Object - Living Being 0.4 m
4 Static Object - Inanimate Being *

* Defined by the navigation system

Notably, the safety zone for the ’Dynamic Object - Liv-
ing Being’ class is the largest, addressing both the physical
risks and potential human discomfort caused by the robot’s
proximity. The second largest safety zone is allocated for
dynamic non-living objects, recognizing the potential dangers
these moving objects pose to the robot. For the last class,
specific distances are not provided, as the navigation algorithm
typically pre-determined these non-dynamic objects (e.g., A∗

algorithm), being static elements already present in the robot’s
mapped environment. This approach ensures a comprehensive
and adaptive navigation strategy, balancing safety and social
acceptability requirements.

IV. RESULTS

Our research focuses on several critical aspects of robotic
perception and social-awareness navigation, including envi-
ronmental perception, obstacle classification, and the gener-
ation of proxemic zones. These components are integral to
enhancing the autonomous navigation capabilities of robots,
particularly those that rely on environmental perception [22],
[23]. Using this information, the robot is programmed to
travel from one location to another, adeptly identifying and
circumventing obstacles while maintaining a safe distance.

This section presents the outcomes of implementing each
one of the stages of our robocentric paradigm for enhancing
social robot navigation. First, the results of the proposed clas-
sification algorithm are presented, detailing its performance in
a series of tests conducted in both real-world and simulated
environments. Subsequently, we showcase the results of the
proxemic zones generated by the algorithm, emphasizing their
dual role in facilitating social interaction and ensuring safety.
The section finishes with an in-depth evaluation of the com-
plete robocentric navigation algorithm, where we rigorously
test its efficacy through a series of real and simulated experi-
ments utilizing an autonomous wheelchair. These experiments
are designed to comprehensively assess the algorithm’s capa-
bilities in practical scenarios, demonstrating its applicability
and effectiveness in enhancing the navigation and interaction
of autonomous wheelchairs in real environments.
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A. Object classification system
Central to our methodology is implementing the object

classification system, categorizing objects into four distinct
classes: Dynamic Object - Living Being, Dynamic Object -
Inanimate, Static Object - Living Being, and Static Object
- Inanimate. This categorization encompasses many objects,
each sharing common characteristics within their respective
class. The aim is to streamline the information the robot
processes, facilitating the efficient generation of a safety zone.
In Figure 4, our algorithm demonstrates its capability to
identify a person, a bench, and a moving vehicle.

Fig. 4. (a) Classification of the person in Dynamic Object: Living Being and
of a bank in Static Object: Inanimate Being, (b) Classification of the car in
Dynamic Object: Being Inanimate.

B. Adaptive Proxemics for social navigation
In autonomous navigation, a critical functionality of robots

is their ability to identify and safely navigate around ob-
jects. They must maintain a safe and social distance from
these obstacles, a concept integral to generating safety areas
[24]. These areas, particularly regarding humans, are often
referred to as proxemic zones, which describe spaces where
interactions are deemed socially acceptable and non-intrusive
[25]. Our work brings a new perspective to this concept by
assigning a safety zone to each classified object category.
In our methodology, each object class is assigned a specific
safety zone. We evaluated the effectiveness of these zones
using the GAZEBO 9 simulator. The robot is programmed to
identify an obstacle and, based on its classification, generate
the appropriate safety zone. In the first set of tests, the robot
successfully identifies an object from each class and creates
a corresponding safety zone. Figures 5, 6, and 7 illustrate the
proxemic zones generated around a person (Dynamic Object:
Living Being), a vase (Static Object: Living Being), and a
car (Dynamic Object: Inanimate), respectively. These figures
show the robot’s ability to avoid or take into account obstacles
while respecting their safety zones, ensuring safe distances
from living beings and inanimate objects.

In the second series of tests, the robot was placed in
an environment with two objects of different classes. The
objective was for the robot to traverse from one side of
the room to the other, negotiating past these objects while
respecting their safety zones. Figure 8 depicts the robot’s
starting point, with the planned shortest path (green line) and
the initial object detection. As the robot approaches the objects
(Figure 9), the safety zones become more accurately defined,
and the robot’s trajectory is adjusted accordingly.

Fig. 5. Dynamic Object - Living Being: (a) simulation in the Gazebo scenario
detecting a person, (b) representation of the scenario and visualization of
sensors in RViz.

Fig. 6. Static Object - Living Being: (a) simulation in the Gazebo scenario
detecting a plant, (b) representation of the scenario and visualization of sensors
in RViz.

Figures 10 and 11 show the robot in the final stages
of its journey, bypassing the object on its left. Despite no
longer detecting objects, the robot’s trajectory remains altered,
respecting the established safety zones.

These tests, conducted in both simulated and controlled
environments, effectively illustrate the capability of our al-
gorithm to identify objects accurately, classify them into pre-
determined categories, and generate appropriate safety zones
based on these classifications.

C. Use case: autonomous wheelchair

Transitioning from virtual environment tests, our research
progressed to validate the Robocentric strategy for social robot
navigation in real-world settings. For this practical test, we

Fig. 7. Dynamic Object - Inanimate Being: (a) simulation in the Gazebo
scenario detecting a car, (b) representation of the scenario and visualization
of sensors in RViz.
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Fig. 8. Robot starting point. From left to right: visualization of the map in
RVIZ, identification of objects by YOLO, and visualization of the environment
in Gazebo.

Fig. 9. Visible security zones. From left to right: visualization of the map in
RVIZ, identification of objects by YOLO, and visualization of the environment
in Gazebo.

positioned the robot in a room interspersed with objects from
various classes. The robot’s task was to traverse from one side
of the room to another, navigating past these objects while
strictly adhering to their designated safety zones.

In Fig. 12, showcase a scenario where the robot visually
identifies 3 objects and then generates a safety zone around
the nearest object, Dynamic Object - Inanimate Being (other
robots), then defines the path to follow (red line), then Fig.
13 the robot encounters a chair. Upon detection, the robot
generates a safety zone around the chair and accordingly
adjusts its trajectory to circumvent the obstacle. The path,
marked by a red line, highlights the robot’s shortest planned
route before the obstacle detection.

In Figure 14, the robot identifies a person and promptly
generates a second safety zone. The updated robot trajectory,
considering both obstacles, ensures the robot passes between
them without encroaching upon their safety zones. We have
documented the process in a video to provide a comprehensive
view of the robot’s navigation in a real environment. This
video can be accessed through the following link: https:
//youtu.be/IwYOkD M0IQ.

V. CONCLUSION

Our research has successfully demonstrated a novel ap-
proach to enhancing autonomous robotic navigation by in-
tegrating advanced object classification and proxemic zone
generation. The key innovation of our work lies in devel-
oping a four-category classification system for objects, en-
abling robots to navigate and interact intelligently in dynamic,
human-centric environments. This system classifies objects as
either dynamic or static and as living beings or inanimate,
thereby allowing robots to make informed decisions about their
navigation strategies.

The practical application of our methodology was tested
using the Robot Operating System (ROS) and GAZEBO

Fig. 10. Robot circumventing the object on its left. From left to right:
visualization of the map in RVIZ, identification of objects by YOLO, and
visualization of the environment in Gazebo.

Fig. 11. Final stage of the robot’s trajectory. From left to right: visualization
of the map in RVIZ, identification of objects by YOLO, and visualization of
the environment in Gazebo.

simulation software. These tests, conducted in simulated and
real-world settings, validated the robot’s ability to identify,
classify, and maintain appropriate safety distances from var-
ious obstacles. The results underscored the efficiency of our
approach in enabling robots to safely and socially navigate
spaces shared with humans, thereby addressing a critical need
in the field of social robotics.

Looking ahead, several avenues for further research and
development have been identified. We plan to explore ways
to improve the robot’s perception system, considering factors
such as varying light conditions, environmental dynamics,
and other real-world challenges that could affect the system’s
performance. Besides, further studies will focus on the social
aspects of human-robot interactions. We aim to investigate
how different demographic groups perceive and interact with
robots, using these insights to refine the proxemic zones
and improve the overall user experience. Finally, we will
explore the application of our system in various fields, such
as healthcare, hospitality, and urban mobility, to assess its
effectiveness and utility across different sectors.

Fig. 12. Robot navigating around the object on its left. From left to right:
map view in RVIZ and real-time environment view.
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Fig. 13. Robot navigating around the object on its right. From left to right:
map view in RVIZ and real-time environment view.

Fig. 14. Final stage of the trajectory. From left to right: map view in RVIZ
and real-time environment view.
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